Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 495
Filter
1.
Mar Pollut Bull ; 202: 116371, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38657492

ABSTRACT

Comparative microplastic (MP) data for cephalopods between oceans is scarce. Our aim was to quantify, characterise, and compare MPs in gills, digestive gland, and mantle of chokka squid from the South Atlantic Ocean (SAO) and Indian Ocean (IO) off the coast of South Africa. South African squid had more MPs compared with other studies (means = 2.0 and 0.4 in SAO and IO squid mantle, respectively). Blue fibres were dominant. Identifiable MPs were polyethylene. Despite IO water having higher MP concentrations than the SAO, SAO squid had higher MP concentrations. Dilution by growth is the likely reason for the lower MP concentrations. Fibres were shorter in SAO than IO squid. However, we could not explain why fibre and mantle lengths from both oceans were positively correlated. Squid may not be the best indicator of marine MPs. The characteristics of MPs in squid can be used to track stocks and migrations.

2.
Front Public Health ; 12: 1357345, 2024.
Article in English | MEDLINE | ID: mdl-38628847

ABSTRACT

The spread of antimicrobial resistance (AMR) is a major global concern, and the islands of the Southwest Indian Ocean (SWIO) are not exempt from this phenomenon. As strategic crossroads between Southern Africa and the Indian subcontinent, these islands are constantly threatened by the importation of multidrug-resistant bacteria from these regions. In this systematic review, our aim was to assess the epidemiological situation of AMR in humans in the SWIO islands, focusing on bacterial species listed as priority by the World Health Organization. Specifically, we examined Enterobacterales, Acinetobacter spp., Pseudomonas spp. resistant to carbapenems, and Enterococcus spp. resistant to vancomycin. Our main objectives were to map the distribution of these resistant bacteria in the SWIO islands and identify the genes involved in their resistance mechanisms. We conducted literature review focusing on Comoros, Madagascar, Maldives, Mauritius, Mayotte, Reunion Island, Seychelles, Sri Lanka, and Zanzibar. Our findings revealed a growing interest in the investigation of these pathogens and provided evidence of their active circulation in many of the territories investigated. However, we also identified disparities in terms of data availability between the targeted bacteria and among the different territories, emphasizing the need to strengthen collaborative efforts to establish an efficient regional surveillance network.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Indian Ocean Islands/epidemiology
3.
Sci Rep ; 14(1): 8008, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580707

ABSTRACT

The Regional Indian Ocean model based on Modular Ocean Model (MOM4p1) was used to understand the importance of a realistic representation of bathymetry on Ocean General Circulation. The model has 1/4° uniform horizontal resolution and is forced with Coordinated Ocean-Ice Reference Experiments (CORE-II) inter-annual forcing with two simulations named BLND (realistic bathymetry) and OM3 (smoothed bathymetry), which only differ in the representation of bathymetry for the years 1992-2005. We also used recent reanalysis products from ORAS5 and SODA3 and ADCP observation to compare the subsurface currents. We show that by the inclusion of realistic bathymetry, there is a significant improvement in the upper ocean salinity, temperature, and currents, particularly near the coast. The salinity and temperature of the upper ocean are very close to the observed value near the coast. The bias in the salinity and temperature was reduced to half in BLND simulation compared to OM3, which led to a more realistic East India Coastal Current (EICC). We show the first evidence of a basin-wide cyclonic gyre over the Bay of Bengal at 1000 m depth during spring, which is just opposite to that of a basin-wide anti-cyclonic gyre at the surface. We found the presence of poleward EICC during spring at 1000 m and 2000 m depth, which is opposite to that of the surface. The presence of this deeper EICC structure is completely absent during fall. We show the presence of a boundary current along the coast of Andaman and Nicobar Island at a depth of 2000 m. The observed Wyrtki Jet (WJ) magnitude and spatial structure are most realistically reproduced in BLND simulation as compared to OM3 simulations. Both ORAS5 and SODA reanalysis products underestimate the WJ magnitude. The presence of the Maldives Islands is responsible for the westward extent of Equatorial Under Current (EUC). The presence of Maldives also creates wakes on the leeward side in the EUC zonal current. During fall, EUC is better defined in the eastern Equatorial Indian Ocean and lies at a depth of between 50 and 100 m, unlike its spring counterpart, in which its core is located slightly deeper, between 100 and 150 m depth. During peak summer months, June-July, a strong eastward zonal jet is present at 1000 m depth, similar to Wyrtki Jet (WJ). Inter-monsoon Jets, i.e., spring and fall jets, are also seen but are in the opposite direction, i.e., westward, unlike eastward in WJ.

4.
Antonie Van Leeuwenhoek ; 117(1): 66, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607563

ABSTRACT

The pink-colored and strictly aerobic bacterium strain, designated as TK19036T, was isolated from mesopelagic layer of the Southwest Indian Ocean. This novel isolate can grow at 10-45 °C (optimum, 30 °C), pH 6.0-8.0 (optimum, pH 7.0), and 2-14% NaCl concentrations (w/v) (optimum, 6%). The predominant respiratory quinone was Menaquinone-7. Major polar lipid profiles contained two aminolipids, aminophospholipid, two glycolipids, phosphatidylethanolamine, and three unknown polar lipids. The preponderant cellular fatty acids were iso-C15:0, C16:1 ω5c and iso-C17:0 3-OH. Phylogenetic analyses based on 16S rRNA gene sequence uncovered that the strain TK19036T pertained to the family Catalinimonadaceae under phylum Bacteroidota, and formed a distinct lineage with the closed species Tunicatimonas pelagia NBRC 107804T. The up-to-bacteria-core gene phylogenetic trees also demonstrated a deep and novel branch formed by the strain TK19036T within the family Catalinimonadaceae. Based on chemotaxonomic, phylogenetic and genomic features presented above, strain TK19036T represents a novel species from a novel genus of the family Catalinimonadaceae, for which the name Roseihalotalea indica gen. nov. sp. nov. is proposed. The type strain is TK19036T (= CGMCC 1.18940T = NBRC 116371T).


Subject(s)
Bacteroidetes , Fatty Acids , Indian Ocean , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacteroidetes/genetics
5.
Mar Environ Res ; 198: 106512, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636275

ABSTRACT

Diurnal vertical migration (DVM) of mesozooplankton in the Deep Scattering Layer (DSL) of the Indian seas is poorly studied. This cyclical vertical migration substantially controls the carbon sequestration in the ocean. The present research is a comprehensive examination to analyse the factors affecting the DVM pattern of the zooplankton community in the Arabian Sea (AS) and the Bay of Bengal (BoB). Echo sounder profiling was conducted at shallow depths (∼10-400m) of the AS (January 2023) and BoB (March 2023) with a period of 24 h to monitor the DVM pattern of the DSL. Vertical migration in both basins showcased the notable influence of the spatio-temporal contrast in the occurrence of daybreak, with the day (descend) and night (ascend) cycle of the DSL. Delayed descent was observed in the AS contrary to BoB, owing to the delayed day break in the AS relative to BoB. Intensity and temporal pattern of the incoming solar radiation were correlated with the DVM whereas diurnal variation of sea surface temperature was observed to be contrasting. The preliminary analysis is indicative of the diversified community structure of the zooplankton community in these basins resulting from the vertical migration. Furthermore, it is conclusive that the surface residence time of the zooplankton is distinct and is affirmed based on daybreak and light intensity particular for each basin. Since daybreak vary with the geolocation, sole dependence on a particular time for migration study can be erroneous, which is highlighted in the present study.

6.
Mar Pollut Bull ; 201: 116176, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493677

ABSTRACT

Masses of plastic and other anthropogenic debris on beaches of inner Seychelles and derived from 53 organised clean-ups have been analysed. Debris and plastic densities ranged from 0.0011 to 0.1622 kg m-2 and 0.0004 to 0.1179 kg m-2, respectively, and data from successive cleans of the same beach resulted in respective median accumulation rates of 0.0293 and 0.0137 g m-2 d-1. There was no dependence of density or accumulation on beach location/aspect or season, but there were significant inverse relationships with beach area. This effect was attributed to most debris and plastic being trapped on the backshore by rocks and vegetation, and the areal proportion of backshore increasing with decreasing beach size. Plastic is derived from local littering and more distal sources, with polyethylene terephthalate bottles, flip-flops and Styrofoam fragments making important contributions. Without intervention and an increased risk of coastal flooding with climate change, beached debris on Seychelles is predicted to increase.


Subject(s)
Citizen Science , Waste Products , Waste Products/analysis , Plastics , Seychelles , Environmental Monitoring/methods , Bathing Beaches
7.
Sci Total Environ ; 924: 171365, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38458452

ABSTRACT

Nitrate is one of the essential variables in the ocean that is a primary control of the upper ocean pelagic ecosystem. Its three-dimensional (3D) structure is vital for understanding the dynamic and ecosystem. Although several gridded nitrate products exist, the possibility of reconstructing the 3D structure of nitrate from surface data has never been exploited. In this study, we employed two advanced artificial intelligence (AI) networks, U-net and Earthformer, to reconstruct nitrate concentration in the Indian Ocean from surface data. Simulation from an ecosystem model was utilized as the labeling data to train and test the AI networks, with wind vectors, wind stress, sea surface temperature, sea surface chlorophyll-a, solar radiation, and precipitation as the input. We compared the performance of two networks and different pre-processing methods. With the input features decomposed into climatology and anomaly components, the Earthformer achieved optimal reconstruction results with a lower normalized mean square error (NRMSE = 0.1591), spatially and temporally, outperforming U-net (NRMSE = 0.2007) and the climatology prediction (NRMSE = 0.2089). Furthermore, Earthformer was more capable of identifying interannual nitrate anomalies. With a network interpretation technique, we quantified the spatio-temporal importance of every input feature in the best case (Earthformer with decomposed inputs). The influence of different input features on nitrate concentration in the adjacent Java Sea exhibited seasonal variation, stronger than the interannual one. The feature importance highlighted the role of dynamic factors, particularly the wind, matching our understanding of the dynamic controls of the ecosystem. Our reconstruction and network interpretation technique can be extended to other ecosystem variables, providing new possibilities in studies of marine environment and ecology from an AI perspective.

8.
Public Underst Sci ; : 9636625241235375, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38555563

ABSTRACT

As population-related climate change research increases, so does the need to nuance approaches to this complex phenomenon, including issues related to cultural and linguistic translations. To explore how climate change is understood in understudied societies, a case-study approach is taken to address social representations of climate change by inhabitants of a Maore village in the French island of Mayotte. The study explores how local fishers understand the issue when considering observed environmental changes. Based on analyses of 30 interviews, the study found that social representations and related climate change discourses are not well established, except for individuals in close contact with French institutions. Issues regarding local culture and language reveal the importance of understanding the different components of climate change. Climate change communication and awareness-raising on the island are explored, as well as considerations of culturally and linguistically complex settings with a Global North/Global South interface.

9.
Clim Dyn ; 62(2): 1391-1406, 2024.
Article in English | MEDLINE | ID: mdl-38304695

ABSTRACT

The interannual variability of the Equatorial Eastern Indian Ocean (EEIO) is highly relevant for the climate anomalies on adjacent continents and affects global teleconnection patterns. Yet, this is an area where seasonal forecasting systems exhibit large errors. Here we investigate the reasons for these errors in the ECMWF seasonal forecasting system SEAS5 using tailored diagnostics and a series of numerical experiments. Results indicate that there are two fundamental and independent sources of forecast errors in the EEIO. The first one is of atmospheric nature and is largely related with too strong and stable easterly atmospheric circulation present in the equatorial Indian Ocean. This induces an easterly bias which leaves the coupled model predominantly in a state with a shallow thermocline and cold SSTs in the EEIO. The second error is of oceanic origin, associated with a too shallow thermocline, which enhances the SST errors arising from errors in the wind. Ocean initial conditions, which depend on both the quality of the assimilation and the ocean model, play an important role in this context. Nevertheless, it is found that the version of the ocean model used for the forecast can also play a non-negligible role at the seasonal time scales, by amplifying or damping the subsurface errors in the initial conditions. Errors in the EEIO are regime-dependent, having different causes in the warm (deep thermocline) regime with strong atmospheric convection and in the cold (shallow thermocline) regime. Errors also exhibit decadal variations, which challenges the calibration methods used in seasonal forecasts. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-023-06985-3.

10.
Mar Pollut Bull ; 201: 116168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412795

ABSTRACT

To assess ocean-scale transport systems, we examined the latitudinal cross-sectional distribution of 137Cs activity concentrations in the Indian and Southern Oceans between December 2019 and January 2020 using low-background γ-spectrometry. At 0°-20°S, 137Cs concentrations exhibited a gradual decrease below the mixing layer (1-0.1 mBq/L). However, the concentrations steeply decreased toward the Southern Ocean along a transect of 30°-60°S (from 0.8 to 0.02 mBq/L) with minor vertical variation at each site. For the 137Cs inventories (0-800 m depth) from 15 to 600 Bq/m2, a maximum value was recorded at 30°S, indicating the downwelling of 137Cs as a reservoir for the Subantarctic Mode Water. The significantly low concentrations (0.02 mBq/L) at 60°S suggest minimal transport of 137Cs to the Southern Ocean. These findings assist in understanding 137Cs circulation patterns and provide valuable insights into the transport pathways of soluble contaminants.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Seawater/chemistry , Cross-Sectional Studies , Water Pollutants, Radioactive/analysis , Oceans and Seas , Cesium Radioisotopes/analysis
11.
J Fish Biol ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332477

ABSTRACT

Recent encounters with sicklefin (Mobula tarapacana) and bentfin (Mobula thurstoni) devil rays in the Chagos Archipelago provide the first confirmed observations of live specimens of these species in this region. Examination of illegal fishing photo archives collected during enforcement revealed these endangered species, and spinetail devil rays (Mobula mobular), are being caught within the archipelago's vast no-take marine protected area. Future cooperation between authorities and mobulid ray experts is crucial to improve the availability and accuracy of enforcement data and improve management of illegal fishing and mobulid ray conservation activities.

12.
Sensors (Basel) ; 24(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38339498

ABSTRACT

Satellite-derived Sea Surface Temperature (SST) and sea-surface Chlorophyll a concentration (Chl-a), along with Automatic Identification System (AIS) data of fishing vessels, were used in the examination of the correlation between fishing operations and oceanographic factors within the northern Indian Ocean from March 2020 to February 2023. Frequency analysis and the empirical cumulative distribution function (ECDF) were used to calculate the optimum ranges of two oceanographic factors for fishing operations. The results revealed a substantial influence of the northeast and southwest monsoons significantly impacting fishing operations in the northern Indian Ocean, with extensive and active operations during the period from October to March and a notable reduction from April to September. Spatially, fishing vessels were mainly concentrated between 20° N and 6° S, extending from west of 90° E to the eastern coast of Africa. Observable seasonal variations in the distribution of fishing vessels were observed in the central and southeastern Arabian Sea, along with its adjacent high sea of the Indian Ocean. Concerning the marine environment, it was observed that during the northeast monsoon, the suitable SST contributed to high CPUEs in fishing operation areas. Fishing vessels were widely distributed in the areas with both mid-range and low-range Chl-a concentrations, with a small part distributed in high-concentration areas. Moreover, the monthly numbers of fishing vessels showed seasonal fluctuations between March 2020 and February 2023, displaying a periodic pattern with an overall increasing trend. The total number of fishing vessels decreased due to the impact of the COVID-19 pandemic in 2020, but this was followed by a gradual recovery in the subsequent two years. For fishing operations in the northern Indian Ocean, the optimum ranges for SST and Chl-a concentration were 27.96 to 29.47 °C and 0.03 to 1.81 mg/m3, respectively. The preliminary findings of this study revealed the spatial-temporal distribution characteristics of fishing vessels in the northern Indian Ocean and the suitable ranges of SST and Chl-a concentration for fishing operations. These results can serve as theoretical references for the production and resource management of off-shore fishing operations in the northern Indian Ocean.

13.
Sci Total Environ ; 915: 169779, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38181947

ABSTRACT

Aerosols are potential supplier of nutrients to the surface water of oceans and can impact biogeochemical processes particularly in the remote locations. The nutrient data from atmospheric supply is poorly reported from the Indian Ocean region. In this study, we present atmospheric nutrients such as reactive nitrogen species (Nitrate, Ammonium, Organic nitrogen), micro-nutrients (e.g. Fe, Mn and Cu) concentration along with mineral dust in the aerosol samples collected over meridional transect during summer (April-May 2018) and monsoon (June-July 2019) months. A significant spatial variation of dust was observed during summer (0.6-22.8 µg m-3) and monsoon (2.8-25.1 µg m-3) months with a decreasing trend from north to south. Dust as well as other nutrient species shows a general north to south decreasing trend, however, no such trend was seen in the soluble trace elements (TEs) concentration. Anthropogenic species like NH4+ and nss-K+ were found below detection limit during monsoon campaign. The fractional solubility (in percentage) of Fe, Mn and Cu were estimated by measuring their concentration in ultrapure water leach which averaged around 0.99 ± 1.12, 31.0 ± 14.9 and 31.1 ± 25.4, respectively during summer and 0.09 ± 0.08, 6.0 ± 8.9, 16.7 ± 9.6, respectively, during monsoon period. Correlation of soluble Fe with total Fe and total acidic species suggest varying dust sources is an important controlling factor for the fraction solubility of Fe with negligible contribution from the chemical processing. However, a significant correlation was observed between total acid and fractional solubility of Mn and Cu suggest role of chemical processing in enhancement of their solubility. Dry deposition flux of aeolian dust was estimated for both campaign using Al concentration and relatively higher fluxes were observed for summer (12.6 ± 8.4 mg·m-2·d-1) and monsoon (8.7 ± 8.4 mg·m-2·d-1) months as compared to model based estimates reported in the literature. Contrastingly, estimated deposition flux of soluble Fe from both campaign displays relatively lower values as compared to model based results which underscores a need for re-evaluation of biogeochemical models with real-time data.

14.
Mar Pollut Bull ; 199: 115985, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184858

ABSTRACT

Although the Indian Ocean receives a large amount of land-based plastic waste, the studies on pathways of riverine plastic debris are limited to date. Therefore, a particle tracking model that included ocean surface currents, horizontal diffusion, Stokes drift, windage, and beaching/re-drifting processes was developed to reproduce the behavior of riverine plastic debris in the Indian Ocean. The modeled particles were released in the model domain based on riverine plastic debris database. The maximum abundance of beached particles occurred during the southwesterly monsoon season, particularly in the Bay of Bengal. The particles released from the rivers were trapped in the northern Indian Ocean unless both Stokes drift and windage were excluded from transportation velocity. These results suggest that the riverine plastic debris was trapped in the northern Indian Ocean until it fragmented into less buoyant small microplastics drifting in the subsurface layer, free from windage and Stokes drift at increasing depths.


Subject(s)
Plastics , Waste Products , Indian Ocean , Waste Products/analysis , Environmental Monitoring/methods , Microplastics
15.
Biodivers Data J ; 12: e111046, 2024.
Article in English | MEDLINE | ID: mdl-38222481

ABSTRACT

DNA was extracted from tissue samples from specimens of newly-collected Bathynomuskensleyi from Queensland and subsequently the COI and 16S rRNA sequences were successfully cloned. The holotype of B.kensleyi was also sampled for COI only. Comparison of the sequences showed that, for the COI sequences, B.jamesi and B.kensleyi have more than 59 different DNA positions amongst 596 known reading sequences. The Kimura two parameter (K2P) distance analysis confirmed that B.jamesi and B.kensleyi are two species. Indian records of Bathynomus are reviewed and three of the four identified species from India are shown to be misidentifications. Bathynomusdecemspinosus, B.doederlini and B.kensleyi are found to not occur in India and the only accepted record is that of Bathynomuskeablei Lowry & Dempsey, 2006. We conclude that, based on molecular analysis and morphological comparisons, the correct species identity of Indian species other than Bathynomuskeablei remains unknown.

16.
Mar Pollut Bull ; 198: 115869, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061144

ABSTRACT

Photosynthesis is the most important bioenergy conversion process on Earth. Capturing instantaneous changes in in situ photosynthesis in open ocean ecosystems remains a major challenge. In this study, fast repetition rate fluorometry (FRRF), which can obtain nondestructive, real-time and in situ estimates of photosynthetic parameters, was used for the first time to continuously observe the spatial variation in in situ photosynthetic parameters in the eastern Indian Ocean (EIO). We further formulated new insights regarding abiotic and biotic factors of potential importance in determining photosynthetic performance. First, we found that the distributions of micro/nano- and picophytoplankton were opposite under the control of nutrient concentrations. Micro/nanophytoplankton had higher cell abundances in the nearshore and upwelling regions, while picophytoplankton had higher abundances in the open ocean, and Prochlorococcus was the dominant group. Second, based on the FRRF technology, we obtained the high-precision and high-density vertical profile map of photosynthetic parameters in the euphotic layer. It was observed that values of the maximum photochemical efficiency (Fv/Fm; 0.14-0.55, unitless) and the functional absorption cross-section of PSII (σPSII; 1.71-4.90 nm2 RCII-1) increased with increasing depth, while high values of the photosynthetic electron transfer rates (ETRRCII; 0.0019-17.0292 mol e- mol RCII-1 s-1) and the nonphotochemical quenching (NPQNSV; 0.35-7.26, unitless) occurred in the shallow 50 m layer, and the values decreased as the depth increased. Finally, we discussed limiting factors that regulated the distribution of photosynthetic parameters and concluded that optical properties varied significantly with changes in the ocean physico-chemical parameters and taxonomic composition of phytoplankton assemblages in the EIO. Picophytoplankton (especially cyanobacteria), rather than the micro/nanophytoplankton community, was the dominant factor influencing photosynthesis. Among abiotic factors, photosynthetically active radiation (PAR) was the proximal limiting factor affecting photosynthetic efficiency, followed by temperature and dissolved inorganic nitrogen (DIN). Consequently, phytoplankton photosynthetic parameters exhibited great variability, allowing rapid responses to environmental condition changes. In this study, we established the basis for detecting future changes in primary production in this oligotrophic area.


Subject(s)
Ecosystem , Phytoplankton , Indian Ocean , Phytoplankton/physiology , Photosynthesis/physiology , Temperature
17.
Toxicon ; 237: 107554, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072316

ABSTRACT

In France, mushroom picking is part of the culture. The practice is not without risk, as around 1300 people are poisoned each year by eating wild mushrooms on the French mainland. However, this practice is not part of local culture on Reunion Island, a French territory located in the Indian Ocean. Indeed, there are practically no reports of mushroom poisoning on Reunion Island. Here we describe, through a retrospective study, cases of mushroom poisoning recorded in the Indian Ocean toxicosurveillance system database from 2020 to 2021. Overall, 19 people were poisoned following wild mushroom ingestion on Reunion Island: 15 in 2020 and 4 in 2021. Six events were recorded: the majority of poisonings involved clusters (n = 5) during a shared meal (pan-fried), only one case was single mushroom poisoning by ingesting a raw mushroom. Of all patients, 15 cases presented a gastrointestinal irritant syndrome (latency between 30 min and 3 h). Chlorophyllum molybdites was positively identified by mycologists in 4 cases, suspected by emergency doctor in 1 case and in one self-declared case, Volvariella volvacea was consumed. Poisoning following ingestion of wild mushrooms does occur on Reunion Island, and Chlorophyllum molybdites is the main culprit.


Subject(s)
Agaricales , Mushroom Poisoning , Humans , Reunion/epidemiology , Retrospective Studies
18.
Environ Pollut ; 343: 123244, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38154779

ABSTRACT

In order to investigate the 239+240Pu potential influence in the ocean, and develop a new method for rapidly monitoring radioactive pollution, the 239+240Pu spatial distribution in the South China Sea (SCS) and the Indian Ocean (IND) sediments is analyzed by SF-ICP-MS (ELEMENT 2). The inventory-weighted mean activities of 239+240Pu were 0.413 ± 0.333 mBq/g, 0.128 ± 0.044 mBq/g, and 0.483 ± 0.606 mBq/g in the sediments of the SCS, eastern IND, and Arabian Sea, respectively. The 239+240Pu activity spatial distribution in the SCS sediments was influenced by the current, the vertical distribution of Pu in seawater, and the transport of particulate matter. The 239+240Pu activity spatial distribution in the IND sediments could be impacted by Antarctic Intermediate Water. The average of 240Pu/239Pu atomic ratios were 0.258 ± 0.034, 0.219 ± 0.031, and 0.212 ± 0.028 in the sediments of the SCS, eastern IND, and Arabian Sea, respectively. The 240Pu/239Pu atomic ratios in the SCS and IND indicate that Pu from the Pacific Proving Ground (PPG) is transported to the IND via the SCS internal current and transverse ocean currents within Indonesia. In addition, a seawater advection-dispersion equation (S-ADE) model is established based on the actual physical processes of radionuclides in the seawater column and well fitting results were obtained (R2 = 0.49 to 0.99). The 239+240Pu data and the geographic information from the sample site were used to correct the Pu distribution in the seawater. The calculated 239+240Pu mean concentrations in the surface seawater were 2.465 mBq/m3 and 2.205 mBq/m3 for the SCS and the eastern IND seawater, respectively, and the result is consistent with the previous measurements. Then, the 239+240Pu stored in the study area of SCS and eastern IND was estimated to be approximately 1.0-1.4% of the global ocean based on the model. This study provides a useful model for guiding and designing future monitoring of pollution by anthropogenic Pu and other isotopes.


Subject(s)
Plutonium , Radiation Monitoring , Water Pollutants, Radioactive , Geologic Sediments , Indian Ocean , Water Pollutants, Radioactive/analysis , Plutonium/analysis , Seawater , China
19.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38038219

ABSTRACT

An anaerobic hyperthermophilic archaeon was isolated from a black smoker chimney with a snail attachment at a water depth of 2 739 m in the Southwest Indian Ocean. The sample was taken from the chimney exterior wall. The enrichment was conducted under a continuous culture with temperature fluctuation of 80-130 °C over 24 h for 42 days at 28 MPa. The isolation was performed at 90 °C at 0.1 MPa. Cells of the isolated strain 813A4T were irregular cocci. Strain 813A4T grew at 60-94 °C (optimal growth at 85 °C) at 0.1 MPa, and growth was detected at up to 99 °C at 28 MPa. At 85 °C, the strain was able to grow at pressures ranging from 0.1 to 110 MPa (optimal pressure, 0.1-40 MPa). At 85 °C, the cells of 813A4T grew at pH 5.5-9 (optimal, pH 7.0) and a NaCl concentration of 1.0-4.0 % (w/v; optimum concentration, 2.5 % NaCl). Strain 813A4T utilized yeast extract, tryptone and peptone as single carbon sources for growth. Elemental sulphur stimulated its growth. The G+C content of the complete genome was 53.48 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 813A4T belonged to the genus Thermococcus, with the highest sequence similarity to Thermococcus barossii SHCK-94T (99.73 %). The average nucleotide identity between strains 813A4T and SHCK-94T was 82.56 %. All these data indicated that strain 813A4T should be classified as representing a novel species of the genus Thermococcus, for which Thermococcus thermotolerans sp. nov. is proposed. The type strain is 813A4T (=JCM 39367T=MCCC M28628T).


Subject(s)
Seawater , Thermococcus , Thermococcus/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Indian Ocean , Sodium Chloride , Base Composition , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry
20.
Zool Stud ; 62: e51, 2023.
Article in English | MEDLINE | ID: mdl-38046785

ABSTRACT

Glyptothoa sagara gen. and sp. nov. is described from the host fish Glyptophidium macropus Alcock, 1894 (Ophidiidae), at depths 300 to 650 metres from the southwest coast of India. The mitochondrial cytochrome c oxidase subunit I (COI) gene of the species was sequenced and compared with other closely related branchial cymothoid genera. Both morphological and molecular data corroborate the inclusion of this parasitic isopod as a new genus, and we describe Glyptothoa sagara gen. and sp. nov. The following combinations of characters characterise the genus: cephalon immersed in pereonite 1; dorsum vaulted; all coxae visible in dorsal view; coxae shorter than or as long as pereonites; pereonites 4-7 slightly decrease in width towards one side, slightly asymmetrical, lateral margins slightly constricted, in hunched side; relatively wide pleon, with large lateral gaps between pleonites; antennula narrowly separated by rostrum, slender, shorter than antenna; antenna with 13 articles, buccal cone obscuring antennal bases; brood pouch arising from coxae 1-4, 6; oostegite 1 bilobed; pleopods rami all simple, without proximomedial lamellar lobe, without folds or thickened ridges. The adult life stages, such as females (ovigerous and non-ovigerous), males and transitional stage of the new species are described. The species is currently known only from the type locality and the type host. The ecological remarks of the newly described taxon are also provided. The following species are transferred from Elthusa Schioedte and Meinert, 1884: Glyptothoa myripristae (Bruce, 1990) comb. nov., Glyptothoa propinqua (Richardson, 1904) comb. nov. and Glyptothoa caudata (Schioedte and Meinert, 1884) comb. nov.

SELECTION OF CITATIONS
SEARCH DETAIL
...